4 Manipulating data

Most common data manpulation can be done using the tidyverse package, which includes dplyr and tidyr. They include functions to subset and merge and pivot dataframes/tibbles.

4.2 Summary statistics

Basic statistics about a column (eg. sum, mean, median, max, min) can be calculated using the summarise function

## Warning: package 'bindrcpp' was built under R version 3.4.4
##       mean median  max  n
## 1 20.09062   19.2 33.9 32

Ranking can be done within the mutate function. This example adds a rank based on descending horsepower:

##     mpg cyl  disp  hp drat    wt  qsec vs am gear carb rank_hp
## 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4      19
## 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4      20
## 3  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1      26
## 4  21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1      21
## 5  18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2      11
## 6  18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1      23
## 7  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4       3
## 8  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2      31
## 9  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2      25
## 10 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4      16
## 11 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4      17
## 12 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3       8
## 13 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3       9
## 14 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3      10
## 15 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4       7
## 16 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4       6
## 17 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4       5
## 18 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1      28
## 19 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2      32
## 20 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1      30
## 21 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1      24
## 22 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2      14
## 23 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2      15
## 24 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4       4
## 25 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2      12
## 26 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1      29
## 27 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2      27
## 28 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2      18
## 29 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4       2
## 30 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6      13
## 31 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8       1
## 32 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2      22

The group_by function can be used to produce grouped statistics:

## # A tibble: 2 x 2
##      am  mean
##   <dbl> <dbl>
## 1  0     3.77
## 2  1.00  2.41

The count function is a quick way of producing frequency counts by one or more variables:

4.3 Conditional statements

New variables can be created with conditional rules by using the case_when function:

4.4 Recode

Recoding data may be useful if you have coded values and want to display a description. This is a convienience function based on case_when():

4.5 Appending columns and rows

Additional columns or rows can be added to a dataframe, but they must have the same number/types of elements, and be in the correct order.

4.7 Tidy Data

You can convert data to/from a tidy format with the tidyr package. Nb. tidyr includes dplyr.

## # A tibble: 9 x 3
##   Type  Age   Amount
##   <chr> <chr>  <dbl>
## 1 A     2016     111
## 2 B     2016     222
## 3 C     2016      NA
## 4 A     2017     333
## 5 B     2017      NA
## 6 C     2017     444
## 7 A     2018      NA
## 8 B     2018     555
## 9 C     2018     666

4.8 tibbles

The tibble package includes some extra functions for altering tibbles.